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Abstract—The efficient synthesis of b-rhamnoside and the corresponding methods for its regioselective protections and deprotec-
tions have been developed in order to provide key building blocks for complex oligosaccharide syntheses toward vaccines against

bacterial infections.
© 2007 Elsevier Ltd. All rights reserved.

It is now widely recognized that bacterial cell surface
carbohydrate antigens play essential roles in host de-
fense immunity against infections. Lipopolysaccharides
(LPSs) are ubiquitous components of the outer cell
membranes of Gram-negative bacteria and are thought
to be involved in host-pathogen cross-talk, notably
through their O-specific chains, which are exposed
toward the external environment.! 3 Exopolysaccharides
(EPSs) are also implicated in virulence and persistence
of bacterial infections.* However, simple isolation and
characterization of these carbohydrate antigens are
insufficient to allow full elucidation of their contribution
to the molecular mechanism of phatogenesis.

Increasingly, 6-deoxy-D-hexoses are receiving attention,
notably concerning their significance toward infectious
diseases. This is because these relatively rare sugars are
frequently found on cell surface glycoconjugates of
pathogenic bacteria. In particular, p-rhamnose and its
4-formamido or 4-azido-4-deoxy derivatives are com-
mon components of LPSs and EPSs from human and
plant-pathogenic species, such as Burkholderia cepacia
complex,>® Pseudomonas aeruginosa,”® and other
pseudomonads,” ' Helicobacter pylori,'> Citrobacter
freundii,'® Campylobacter fetus,'* Stenotrophomonas
maltophilia,"> Xanthomonas campestris,'® and Brucella."”
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Given the fact that p-rhamnose is only encountered in
microorganisms and not in humans, animals or plants,
this rare monosaccharide is a promising target for the
development of new anti-infective agents, including vac-
cines. Indeed, rhamnose-containing motifs should pro-
vide the basis for development of synthetic bacterial
O-polysaccharide conjugate vaccines.'®

Very few syntheses of b-rhamnose oligosaccharides have
been hitherto reported,'”-'°-22 mainly because of the lack
of direct access to b-rhamnose in large quantities as pre-
cursor and as key building blocks. In addition, to our
knowledge, there is no commercial supply for p-rham-
nose and its known chemical synthesis only affords an
already partially protected derivative.?> A fast proce-
dure for the preparation of this rare sugar has been de-
scribed. This involves mild hydrolysis of bacterial LPS.??
Unfortunately, this method is not particularly adapted
for the production of therapeutic agents. The present
work focuses on an efficient synthesis of p-rhamnoside
3, and reports the well defined selection of regioselective
protection and deprotection pathways required to pro-
vide easy access to building blocks 4, 9-11, 14, 19, and
23 in high yields, for complex oligosaccharide synthesis.

D-Rhamnoside 3 was synthesized from D-mannose in
87% overall yield (Scheme 1). Triflic acid-promoted
glycosydation of the per-O-acetylated mannose with
p-methoxyphenol, followed by de-O-acetylation using
Zemplén conditions (NaOMe, MeOH) led to p-meth-
oxyphenyl mannoside 1.2* Regioselective iodination of
the primary hydroxyl group of 1 was achieved in 93%
yield using triphenylphosphine, imidazole, and iodine
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Scheme 1. Reagents and conditions: (i) (a) Ac,O/pyridine, cat. DMAP, rt, 12 h, quantitative (a only); (b) 2 equiv p-MPOH, 0.15 equiv TfOH,
CH,Cl,, 0 °C then rt, 7 h, 95%; (c) MeONa/MeOH, rt, 3 h, quantitative; (ii) 1.5 equiv I, 1.5 equiv Ph3P, 2 equiv imidazole, THF, 65 °C, 2 h, 93%;

(iii) 1.5 equiv Bu3SnH, 0.1 equiv AIBN, toluene, 110 °C, 1 h, 98%.

in refluxing THF.2225 The '*C NMR of 2 showed the
shielding of the C-6 signal from 61.3 to 6.2 ppm. Reduc-
tion of iodide 2 using tributyltin hydride in the presence
of AIBN gave the expected p-rhamnoside 3% in 98%
yield.?” The most indicative NMR data were the shield-
ing for the H-6 signal from 3.60-3.27 to 1.23 ppm and
the deshielding of the C-6 from 6.2 to 17.2 ppm. This
efficient procedure for preparing p-rhamnopyranoside
3, derived from D-mannose, was well suited to large
scale synthesis given the high yields and easy isolation
of intermediates at each steps.

The single step protection of the 3,4-trans-diol in the
presence of the 2,3-cis-diol using a-diketone, via tetra-
methoxyacetal formation, was particularly powerful
for the selective protection of our vicinal diequatorial
diol 3 (Scheme 2). Thus, reaction of butane-2,3-dione
with p-methoxyphenyl o-D-rhamnoside 3 in the presence
of Lewis acid catalysis (BF3'Et,0) and trimethyl ortho-
formate gave butane diacetal (BDA) 4 in near quantita-
tive yield.2%2° The "H and '>C NMR data of 4 confirmed
the BDA structure with the typical signals at 6 3.34, 3.26
(2s, 6H, OCHs;), 1.34, 1.33 (2s, 6H, CHj3), and 100.3,
99.9 (C-q), 48.1, 47.7 (OCHs3), 17.8, 17.7 (CH3). The
fully protected rhamnoside 5 was obtained in quasi-
quantitative yield by the reaction of 4 with levulinic acid
in the presence of N,N'-diisopropylcarbodiimide (DIPC)
and 4-dimethylamino-pyridine (DMAP).!® The low-field
shifted signal of H-2 from 4.12 to 5.23 ppm and the pres-
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ence of new signals corresponding to the methylene
groups at 2.84-2.70 (m, 4H) and to the methyl group
at 2.22 ppm of the levulinic ester confirmed the structure
of derivative 5. The BDA protecting group was then re-
moved by aqueous acid hydrolysis®® and then the result-
ing diol 6 was benzoylated or acetylated to provide
intermediates 7 and 8 in 82% and 84% yields over two
steps, respectively. Diol 6 might be selectively protected
as function of the difference of reactivity between both
hydroxyl groups (HO-3 > HO-4). The selective and mild
levulinyl group removal was achieved by treatment with
hydrazine hydrate in pyridine/acetic acid mixture for
10 min to afford 9 and 10 in very good yields.?! Upfield
displacements for the H-2 signals in the 'H NMR
spectra confirmed the levulynyl group cleavage.

Until now, the synthetic manipulations proposed by
Evans et al.>? constituted the most convenient route
toward an anomeric analog of the 2,3-O-isopropylidene
p-rhamnoside 11. However, in their procedure, this reac-
tion involved the competition between the formation of
1,3-dioxane and dioxolane rings using kinetic or ther-
modynamic controls. Therefore, graded acid hydrolysis
has to be employed to afford the acetonide mannoside
intermediate with a ‘moderate’ yield of 75%. In our case,
the key intermediate 3 reacted with 2,2’-dimethoxypro-
pane and p-TsOH acid catalyst in acetone (Scheme 3).
Temporary protection at positions 2 and 3 was accom-
plished by the formation of acetonide 11 in excellent
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Scheme 2. Reagents and conditions: (i) 1.1 equiv butan-2,3-dione, 0.5 equiv BF5-Et,0, 4 equiv CH(OMe)s;, MeOH, rt, 20 h, 99%; (ii) 5.6 equiv
CH;C(O)CH,CH,CO>H, 6.6 equiv DIPC, cat. DMAP, CH,Cl,, rt, 12 h, 99%; (iii) TFA/H,0 (9:1), rt, 3 min, 6: 62% or (a) TFA/H,O (9:1), rt, 3 min;
(b) 2.4 equiv RCl, pyridine, 0 °C then rt, 12 h, 7: R = Bz, 82% (over two steps), 8: R = Ac, 84% (over two steps); (iv) 1.2 equiv hydrazine hydrate,

pyridine/AcOH, 20 °C, 10 min, 9: R = Bz, 94%, 10: R = Ac, 90%.
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Scheme 3. Reagents and conditions: (i) 2,2’-dimethoxypropane/acetone (1:1), 0.2 equiv p-TsOH-H,O, rt, 0.5 h, 98%; (ii) 3 equiv NaH, 3 equiv BnBr,
cat. BuyNI, DMF, 0 °C then rt, 14 h, 99%; (iii) TFA/H,O/THF (1:1:4), 0 °C then rt, 1 h, 95%; (iv) 1.1 equiv Bu,SnO, toluene, reflux, 2 h then

1.1 equiv BnBr, 1.1 equiv BuyNBr, 65 °C, 14 h, 81%.
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98% yield. Building block 14 was synthesized from 11 by
benzylation and ketal cleavage in 94% yields over two
steps, followed by dibutyl-stannylidene mediated benzyl-
ation of the O-3. The high yield of 14 (81%) shows the
excellent regioselectivity of this method. Due to the sub-
tle differences of chemical shifts between ether-protected
and non-protected positions, the structures of com-
pounds 11-14,33 notably characterized through the
observation of signal muliplicities, were also confirmed
by COSY experiments.

The selective O-3 protection of key rhamnoside 3 was a
very useful procedure because it can substantially sim-
plify reaction pathways in complex oligosaccharide syn-
thesis (Scheme 4). The ‘stannylation method’, by which
unprotected 3 was activated with dibutyltin oxide, and
then alkylated in the presence of alkyl bromide and tet-
rabutylammonium halide, followed by benzoylation,
afforded 3-O-benzylated 16 and 3-O-allylated 17 in
77% and 64% yields, respectively, over three steps.** An-
other strategy consisted of the direct high O-3 selective
treatment of 3 with triisopropylsilyl trifluoromethane-
sulfonate to give only silylated compound 18 in 70%
yields over two steps. Deprotection of compounds 16—
18, with no benzoyl migration, was accomplished in
99%, 74%, and 63% yields using the corresponding
smooth procedures, that is hydrogenolysis (palladium
on carbon and H, at atmospheric pressure), palla-
dium-catalyzed de-O-allylation,'® and treatment with
tetrabutylammonium fluoride (TBAF), respectively.
Compounds 16-19°° gave NMR signals for H-3 upfield
and H-2 and H-4 downfield, clearly indicating the O-3
modifications compared to 2,4-di-O-benzoylation.

An interesting observation was the isolation of p-meth-
oxyphenyl 2-O-benzoyl-3-O-triisopropylsilyl-a-p-rham-
noside in 21% yield during the preparation of 18 by
treatment with benzoyl chloride instead of benzoic
anhydride. In addition, the selective benzoylation of diol
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Scheme 4. Reagents and conditions: (i) (a) 1.05equiv Bu,SnO,
toluene/MeOH (10:1), reflux, Dean—Stark, 2 h; (b) 1.05 equiv BnBr,
1.05 equiv BuyNI, toluene, 65°C, 20 h, 78% (over two steps); (c)
2.4 equiv BzCl, pyridine, 0 °C then rt, 12 h, 99%; (ii) (a) 1.05 equiv
Bu,SnO, toluene/THF (10:1), reflux, Dean-Stark, 2 h; (b) 1.05 equiv
AllBr, 1.05 equiv BuyNBr, toluene, 65 °C, 12 h, 65%; (over two steps);
(c) 2.4 equiv BzCl, pyridine, 0 °C then rt, 12 h, 99%; (iii) (a) 1.05 equiv
TIPSOTT, 1.6 equiv 2,6-lutidine, CH,Cl,/DMF (9:1), 0°C, 3 h; (b)
3 equiv Bz,0O, pyridine, cat. DMAP, reflux, 8 h, 70% (over two steps);
(iv) H, cat. Pd-C, EtOH/CH,Cl, (10:1), cat. HCI, rt, 12 h, 99%; (v)
0.3 equiv PdCl,, MeOH/CH,Cl, (3:2), rt, 5 h, 74%; (vi) 5 equiv TBAF,
5.5 equiv AcOH, THF, 0 °C then rt, 8 h, 63%.
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Scheme 5. Reagents and conditions: (i) 1 equiv BzCl, pyridine, —50 °C
to rt, 12 h, 15: 24%, 16: 19%, 20: 59%, and 21: 2%.
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Scheme 6. Reagents and conditions: (i) Ac,O/pyridine, cat. DMAP, rt,
12 h, 99%; (ii) 10 equiv CAN, toluene/CH;CN/H,O (1:1.4:1), rt, 2.5 h,
76%.

intermediate 15, obtained during the synthesis of 3-O-
benzylated 16, by using 1 equiv of benzoyl chloride at
—50 °C mainly leads to the 2-O-benzoyl rhamnoside
20 (Scheme 5). Thus, the order of reactivity for the
hydroxyl groups of rhamnosides seemed to be in agree-
ment with the reported selective acylation of mannoside,
that is HO-3 > HO-2 > HO-4.3637

The oxidative removal of the p-methoxyphenyl group of
per-O-acetylated rhamnoside 22 with ceric ammonium
nitrate (CAN) afforded hemiacetal 23 in 76% yield
(Scheme 6), which could be easily activated as trichloro-
acetimidate glycosyl donor (not shown). The formation
of 23 was observed in the NMR spectra and notably by
the disappearence of the AB system of the phenyl group
at 0 7.02-6.98, 6.85-6.82 ppm and the singlet corre-
sponding to the methoxy group at 3.78 ppm.

In conclusion, an efficient large scale synthesis of D-
rhamnoside 3, a rare sugar, has been accomplished.
The orthogonal protection—deprotection pathways were
performed in very high yields, providing useful key
building blocks for the synthesis of p-rhamnose oligo-
saccharides that are common motifs of LPSs or EPSs
of pathogenic bacteria. Glycosylation reactions involv-
ing p-rhamnosides 4, 9, 10, 14, and 19 toward the prep-
arations of complex oligosaccharidic structures are
currently underway.
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